The Department of Mechanical, Materials, and Aerospace Engineering offers several flexible programs in mechanical and aerospace engineering, with five major areas of study: computer-aided design and manufacturing, dynamics and control, fluid dynamics, solids and structures, and thermal sciences. The department also offers programs in materials science and engineering and manufacturing engineering.

Degrees Offered

- Master of Science in Mechanical and Aerospace Engineering
- Master of Science in Materials Science and Engineering
- Master of Science in Manufacturing Engineering
- Master of Engineering in Mechanical and Aerospace Engineering
- Master of Engineering in Materials Science and Engineering
- Master of Engineering in Manufacturing Engineering
- Doctor of Philosophy in Mechanical and Aerospace Engineering
- Doctor of Philosophy in Materials Science and Engineering

Interdisciplinary Programs

- Master of Science in Mechanical and Aerospace Engineering with specialization in Energy/Environment/Economics (E³)
- Master of Science in Materials Science and Engineering with specialization in Energy/Environment/Economics (E³)
- Master of Engineering in Mechanical and Aerospace Engineering with specialization in Energy/Environment/Economics (E³)
- Master of Engineering in Materials Science and Engineering with specialization in Energy/Environment/Economics (E³)

Certificate Programs

- Computer Integrated Design and Manufacturing
- Product Quality and Reliability Assurance

Research Centers

- Fluid Dynamics Research Center (http://fdrc.iit.edu/)
- Thermal Processing Technology Center (http://tptc.iit.edu/)

Research Facilities

Mechanical and aerospace engineering laboratories include the Fejer Unsteady Wind Tunnel; the Morkovin Low-Turbulence Wind Tunnel; the National Diagnostic Facility, a computer-controlled, high-speed, subsonic flow wind tunnel; a high-speed jet facility for aeroacoustic research; a hydrodynamics laboratory; flow visualization systems; laser-based measuring equipment and manufacturing; several computer-based data acquisition, processing and display systems of the Fluid Dynamics Research Center; laboratories in experimental mechanics; laboratories for research in robotics, guidance and navigation, computer integrated manufacturing, Footlik CAD lab, biomechanics and its instrumentation, combustion, and internal combustion engines.

Materials science and engineering laboratories include facilities for research in metallography, heat treatment, and mechanical testing; optical, scanning, and transmission electron microscopes; powder metallurgy, and laser machining facilities. The department has numerous computers and workstations available for computational research activities.
Research Areas

The faculty conducts research activities in fluid dynamics, including aeroacoustics, flow control, turbulent flows, unsteady and separated flows, instabilities and transition, turbulence modeling, flow visualization techniques, computational fluid dynamics; metallurgical and materials engineering, including microstructural characterization, physical metallurgy of ferrous and nonferrous alloys, powder materials, laser processing and machining, high temperature structural materials, mechanical behavior, fatigue and fracture, environmental fatigue and fracture, computational x-ray diffraction analysis, texture, recrystallization and computational methods in materials processing; solids and structures, including experimental mechanics of composites and cellular solids, high strain rate constitutive modeling and thermomechanical coupling, fracture mechanics, design and testing of prosthetic devices; computational mechanics, cable dynamics and analysis of inelastic solids; theoretical mechanics, including wave propagation, fracture, elasticity and models for scoliosis; computer added design and manufacturing, concentrated in the areas of computer-aided design, computer-based machine tool control, computer graphics in design, manufacturing processes, wear and fracture behavior of cutting tools, tribology, frictional wear characteristics of ceramics, dynamic systems, and mechanical vibrations; thermal sciences, alternative fuels, mobile and stationary source combustion emissions, and dynamics and control, including guidance, navigation, and control of aircraft and spacecraft, intelligent control for aircraft models, flow fields, robotics devices for laser machining; and dynamic analysis and control of complex systems.

Faculty

Arastoopour, Hamid, Professor of Chemical Engineering and Mechanical Engineering, Henry R. Linden Professor of Engineering, and Director of the Wanger Institute for Sustainability and Energy Research (WISER). B.S., Abadan Institute of Technology (Iran); M.S., Ph.D., G.E., Illinois Institute of Technology. Computational fluid dynamics (CFD) and transport phenomena of multiphase flow, fluidization, flow in porous media, particle technology and material processing, and environmental engineering problems, hydrogen storage, tire recycling, particle technology in applications to coal gasification, production of gas from unconventional gas reserves and hydrates, and energy sustainability issues.

Bowman, Keith J., Duchossois Leadership Professor of Materials Engineering and Chair. B.S., M.S., Case Western Reserve University; Ph.D., University of Michigan. Mechanical behavior of materials, electromechanical behavior, preferred orientation and property anisotropy, processing of ceramic materials.

Cammino, Roberto, Senior Lecturer of Mechanical and Aerospace Engineering. B.S., M.S., Ph.D., Illinois Institute of Technology. Fracture mechanics, finite element method.

Cassel, Kevin W., Associate Professor of Mechanical and Aerospace Engineering and Associate Chair. B.S., Messiah College; M.S., Ph.D., Lehigh University. Computational fluid dynamics, unsteady boundary-layer flows, buoyancy-driven flows, supersonic and hypersonic boundary-layer flows, and computational hemodynamics.

Cesarone, John C., Senior Lecturer of Mechanical Engineering. B.S., M.S., University of Illinois; Ph.D., Northwestern University. Robotics, reliability engineering and manufacturing.

Clack, Herek L., Associate Professor of Mechanical and Aerospace Engineering. B.S., Massachusetts Institute of Technology; Ph.D., University of California-Berkeley. Thermofluid systems: atomization, combustion, hazardous waste incineration, combustion emissions, heat/mass transfer and phase change, ultrasound and sonochemical materials processing.

Cramb, Alan W., Charles and Lee Finkl Professor of Metallurgical and Materials Engineering, Provost, and Senior Vice President for Academic Affairs. B.Sc., University of Strathclyde (Scotland); Ph.D., University of Pennsylvania. Initial solidification behavior of steels, solidification behavior of liquid oxides, effect of inclusion chemistry on solidification behavior, clean steel production, initial solidification phenomena and continuous casting mold.

Datta-Barua, Seebany, Assistant Professor of Mechanical and Aerospace Engineering. B.S., M.S., Ph.D. Stanford University. Satellite-based atmospheric remote sensing, global navigation satellite systems, geospace environment imaging, estimation and monitoring.

Gosz, Michael R., Associate Professor Mechanical and Materials Engineering and Vice Provost for Admissions and Financial Aid. B.S., Marquette University; M.S., Ph.D., Northwestern University. Computational solid mechanics, fracture mechanics, interface effects in composite materials, modeling of composite structures subjected to thermal cycling, and nonlinear dynamic finite element analysis of submerged flexible structures.
Hall, Carrie M., Assistant Professor of Mechanical, Materials and Aerospace Engineering. B.S., Bob Jones University; Ph.D., Purdue University. Modeling and control of advanced internal combustion engines; development of clean and efficient utilization of alternative fuels.

Joerger, Mathieu, Research Assistant Professor of Mechanical, Materials and Aerospace Engineering. M.S., Ph.D., Illinois Institute of Technology.

Khanafseh, Samer, Research Assistant Professor of Mechanical and Aerospace Engineering. B.S., Jordan University of Science and Technology (Jordan); M.S., Ph.D., Illinois Institute of Technology.

Meade, Kevin P., Professor of Mechanical Engineering. B.S., M.S., Illinois Institute of Technology; Ph.D., Northwestern University. Solid mechanics, biomechanics, elasticity, fracture mechanics and computational mechanics.

Monnier, Bruno, Lecturer of Mechanical Engineering. Diploma d’ Ingenieur, ENSEE/HT (France); M.S., Chalmers University of Technology (Sweden); Ph.D., Illinois Institute of Technology.

Nagib, Hassan M., John T. Rettaliata Professor of Mechanical and Aerospace Engineering. B.S., M.S., Ph.D., Illinois Institute of Technology. Fluid dynamics, heat transfer, applied turbulence, wind engineering, and aeroacoustics.

Nair, Sudhakar E., Professor of Mechanical and Aerospace Engineering and Applied Mathematics. B.Sc., Regional Engineering College (India); M.E., Indian Institute of Science (India); Ph.D., University of California-San Diego. Solid mechanics, stress analysis of composite and inelastic material, dynamics of cable, fracture mechanics and wave propagation theory.

Nash, Philip G., Professor of Materials Engineering and Director of the Thermal Processing Technology Center. B.S., City of London Polytechnic (England); Ph.D., Queen Mary College of London University (England). Physical metallurgy, intermetallics, powder metallurgy, composites, phase equilibria and transformations.

Ostrogorsky, Aleksandar, Professor of Mechanical and Materials Engineering. Dipl.Ing., University of Belgrade (Serbia); M.S., Rensselaer Polytechnic Institute; Sc.D., Massachusetts Institute of Technology. Heat and mass transfer phenomena occurring in materials processing; Directional solidification/single crystal growth focusing on semiconductor alloys; Wide band gap materials for gamma ray detectors (semiconductors and scintillators); Diffusion, growth of carbon nanotubes.

Pervan, Boris, Professor of Mechanical and Aerospace Engineering. B.S., University of Notre Dame; M.S., California Institute of Technology; Ph.D., Stanford University. Dynamics, control, guidance, and navigation.

Raman, Ganesh, Professor of Mechanical and Aerospace Engineering and Deputy Vice Provost for Research. B.Tech., Indian Institute of Technology (India); M.S., Cleveland State University; Ph.D., Case Western Reserve University. Experimental fluid mechanics, aeroacoustics, active flow control, jet screech, and fluidics.

Rempe, Dietmar, Professor of Mechanical and Aerospace Engineering and Applied Mathematics and Associate Dean, Armour College of Engineering. M.S., Ph.D., Universitat Stuttgart (Germany). Fluid mechanics, especially theoretical studies of transitional and turbulent shear flows in open systems, numerical fluid mechanics, modeling for environmental and urban fluid mechanics, coherent structures in turbulent flows, control of transitional and turbulent wall layers, nonlinear dynamical systems.

Ruiz, Francisco, Associate Professor of Mechanical and Aerospace Engineering. B.S.M.E., Universidad Politecnica de Madrid (Spain); M.E., Ph.D., Carnegie-Mellon University. Combustion, atomization, pollution control of engines, fuel economy, alternative fuel, electronic cooling and special cooling.

Shaw, Leon L., Rowe Family Professor of Materials Science and Engineering. B.S., M.Eng., Fuzhou University (China); M.S., Ph.D., University of Florida. Materials synthesis and processing, energy storage and conversion, solid freeform fabrication.

Spenko, Matthew, Associate Professor of Mechanical Engineering. B.S. Northwestern University; M.S., Ph.D., Massachusetts Institute of Technology. Robotics, design, dynamics, and control.

Srivastava, Ankit, Assistant Professor of Mechanical, Materials and Aerospace Engineering. B.Tech., Indian Institute of Technology (India); M.S., Ph.D., University of California, San Diego. Wave propagation, phononics, metamaterials, NDE-SHM through wave techniques, Micromechanics and homogenization.

Tin, Sammy, Professor of Materials Engineering. B.S., California Polytechnic State University-San Luis Obispo; M.S., Carnegie Mellon University; Ph.D., University of Michigan. Processing and deformation characteristics of high-temperature structural materials, modeling the microstructure of Ni-base superalloy turbine disks during thermomechanical processing, understanding the mechanisms of creep and fatigue deformation in advanced high-refractory content single crystal turbine blades.
Vural, Murat, Associate Professor of Mechanical and Aerospace Engineering. B.Sc., M.Sc., Ph.D., Istanbul Technical University (Turkey). Experimental solid mechanics with emphasis on high-strain-rate mechanical response, thermomechanical coupling, failure characterization and constitutive modeling of homogeneous and heterogeneous materials.

Wark, Candace E., Professor of Mechanical and Aerospace Engineering. B.S., M.S., Michigan State University; Ph.D., Illinois Institute of Technology. Fluid dynamics, turbulence, digital data acquisition and processing.

Williams, David R., Professor of Mechanical and Aerospace Engineering and Director of the Fluid Dynamics Research Center. B.S.E., Stevens Institute of Technology; M.S.E., Ph.D., Princeton University. Experimental fluid mechanics with emphasis on flow measurement and flow control techniques.

Wu, Benxin, Associate Professor of Mechanical Engineering. B.S., Tsinghua University; M.S., University of Missouri-Rolla; Ph.D., Purdue University. Laser-matter interactions, laser applications in manufacturing, materials processing, and other areas.
Admission Requirements

Cumulative minimum undergraduate GPA: 3.0/4.0
GRE score minimum:
1000 (quantitative + verbal) 3.0 (analytical writing)
Typical admitted quantitative score is 650 minimum.
TOEFL minimum: 550/213/80*

Meeting the minimum GPA and test score requirements does not guarantee admission. Test scores and GPA are only two of several important factors considered. Admission as a regular graduate student normally requires a bachelor’s degree from an accredited institution in mechanical engineering, aerospace engineering, metallurgical engineering, materials engineering, or engineering mechanics. A candidate with a bachelor’s degree in another field, and with proficiency in other engineering disciplines, mathematics and physics, may also be eligible for admission. However, students must remove any deficiencies in essential undergraduate courses that are prerequisites for the chosen degree program, in addition to meeting the other requirements of the graduate program.

The chair for graduate programs serves as a temporary advisor to new full-time and part-time graduate students admitted to the department as matriculated students until an appropriate faculty member is selected as the advisor. Students are responsible for following the departmental procedures for graduate study. A guide to graduate study in the department is available on the departmental Web site (http://www.iit.edu/engineering/mmae) and in the MMAE main office (243 Engineering 1) to all registered MMAE graduate students, and should be consulted regularly for information on procedures, deadlines, forms, and examinations. Departmental seminars and colloquia are conducted on a regular basis. All full-time graduate students must register for the MMAE 593 seminar course each semester and attend them regularly.

The department reserves the right to review and approve or deny the application for admission of any prospective degree-seeking student. Non-degree graduate students who intend to seek a graduate degree from the department must maintain a GPA of 3.0 and must apply for admission as a degree-seeking student prior to the completion of nine credit hours of study. Maintaining the minimum GPA requirement does not guarantee admission to MMAE graduate degree programs. A maximum of nine credit hours of approved coursework taken as a non-degree student and passed with a grade of "B" or better may be applied to the degree.

* Paper-based test score/computer-based test score/internet-based test score.
Master of Engineering in Mechanical and Aerospace Engineering
Master of Engineering in Materials Science and Engineering
Master of Engineering in Manufacturing Engineering

30 credit hours

These programs are aimed at broadening student potential beyond the B.S., enhancing technical versatility and, in some instances, providing the opportunity for changes in career path. The Master of Engineering programs are course-only degree programs and require a minimum of 30 credit hours. There is no thesis or comprehensive examination requirement. The student, in consultation with his or her advisor, prepares a program of study that reflects individual needs and interests. The advisor, as well as the department’s Graduate Studies Committee, the Department Chair, and the Graduate College must approve this program. Students working toward this degree are not eligible for departmental financial support.

Course Requirements for the Master of Engineering in Mechanical and Aerospace Engineering

<table>
<thead>
<tr>
<th>Required Courses:</th>
<th>Core courses as determined by major area of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAE 501 Engineering Analysis I AND one core course in major area of study</td>
<td>Fluid Dynamics</td>
</tr>
<tr>
<td>Core courses as determined by major area of study</td>
<td>Thermal Sciences</td>
</tr>
<tr>
<td>MMAE 502 Engineering Analysis II</td>
<td>MMAE 520 Advanced Thermodynamics</td>
</tr>
<tr>
<td>MMAE 517 Computational Fluid Dynamics</td>
<td>Solids and Structures</td>
</tr>
<tr>
<td>MMAE 532 Advanced Finite Element Methods</td>
<td>MMAE 530 Advanced Mechanics of Solids</td>
</tr>
<tr>
<td>MMAE 544 Design Optimization</td>
<td>Dynamics and Controls</td>
</tr>
<tr>
<td>MMAE 510 Fundamentals of Fluid Mechanics</td>
<td>MMAE 541 Advanced Dynamics</td>
</tr>
<tr>
<td>AND elective courses as needed.</td>
<td>Computer Aided Design and Manufacturing:</td>
</tr>
<tr>
<td>MMAE 545 Advanced CAD/CAM</td>
<td>MMAE 545 Advanced CAD/CAM</td>
</tr>
</tbody>
</table>

Students may choose from a list of courses specific to their area of interest to complete degree requirements. Up to nine credit hours at the 400-level are allowed, assuming the courses were not required for an undergraduate degree. Up to six credit hours of accelerated (700-level) courses are allowed.

Course Requirements for the Master of Engineering in Materials Science and Engineering

<table>
<thead>
<tr>
<th>Required Courses (choose seven)</th>
<th>MMAE 567 Fracture Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAE 468 Introduction to Ceramic Materials</td>
<td>MMAE 568 Diffusion</td>
</tr>
<tr>
<td>MMAE 470 Introduction to Polymer Science</td>
<td>MMAE 569 Advanced Physical Metallurgy</td>
</tr>
<tr>
<td>MMAE 472 Advanced Aerospace Materials</td>
<td>MMAE 570 Computational Methods in Materials Processing</td>
</tr>
<tr>
<td>MMAE 478 Service Failure Analysis</td>
<td>MMAE 571 Microstructural Characterizations of Materials</td>
</tr>
<tr>
<td>MMAE 480 Forging & Forming</td>
<td>MMAE 573 Transmission Electron Microscopy</td>
</tr>
<tr>
<td>MMAE 501 Engineering Analysis I</td>
<td>MMAE 574 Ferrous Transformations</td>
</tr>
<tr>
<td>MMAE 520 Advanced Thermodynamics</td>
<td>MMAE 576 Materials & Process Selection</td>
</tr>
<tr>
<td>MMAE 533 Fatigue & Fracture Mechanics</td>
<td>MMAE 578 Fiber Composites</td>
</tr>
<tr>
<td>MMAE 554 Electrical, Magnetic, & Optical Properties of Materials</td>
<td>MMAE 579 Advanced Materials Processing</td>
</tr>
<tr>
<td>MMAE 561 Solidification & Crystal Growth</td>
<td>To complete the degree requirements, students may choose from a list of courses and may apply up to twelve credit hours of 400-level courses, as long as they were not used to satisfy requirements for an undergraduate degree. Up to six credit hours of accelerated (700-level) courses are allowed</td>
</tr>
<tr>
<td>MMAE 562 Design of Modern Alloys</td>
<td></td>
</tr>
<tr>
<td>MMAE 563 Advanced Mechanical Metallurgy</td>
<td></td>
</tr>
<tr>
<td>MMAE 564 Dislocations & Strengthening Mechanisms</td>
<td></td>
</tr>
<tr>
<td>MMAE 565 Materials Laboratory</td>
<td></td>
</tr>
<tr>
<td>MMAE 566 Problems in High-Temperature Materials</td>
<td></td>
</tr>
</tbody>
</table>
Course Requirements for Master of Engineering in Manufacturing Engineering

Mechanical and Aerospace Engineering Emphasis

Required Courses
- MMAE 545 Advanced CAD/CAM
- MMAE 546 Advanced Manufacturing Engineering
- MMAE 547 Computer-Integrated Manufacturing Technologies

OR
- MMAE 557 Computer-Integrated Manufacturing Systems
- MMAE 560 Statistical Quality and Process Control

AND one course in materials science and engineering

AND one course emphasizing numerical methods:
- MMAE 451 Finite Element Methods in Engineering
- MMAE 532 Advanced Finite Element Methods
- MMAE 544 Design Optimization

OR
- MMAE 570 Computational Methods in Materials Processing

AND elective courses as needed.

Materials Science and Engineering Emphasis

Required Courses
- MMAE 547 Computer-Integrated Manufacturing Technologies
- MMAE 560 Statistical Quality and Process Control

AND one of the following:
- MMAE 445 Computer-Aided Design
- MMAE 545 Advanced CAD/CAM
- MMAE 546 Advanced Manufacturing Engineering

OR
- MMAE 576 Materials and Process Selection

AND one of the following:
- MMAE 574 Ferrous Transformations
- MMAE 585 Engineering Optics and Laser-Based Manufacturing

AND one course emphasizing numerical methods:
- MMAE 451 Finite Element Methods in Engineering
- MMAE 517 Computational Fluid Dynamics
- MMAE 532 Advanced Finite Element Methods
- MMAE 544 Design Optimization

OR
- MMAE 570 Computational Methods in Materials Processing

AND elective courses as needed.

Master of Engineering in Manufacturing Engineering via Internet

30 credit hours

The Master of Engineering in Manufacturing Engineering via Internet is a course-only, professionally oriented degree program that requires a minimum of 30 credit hours. There is no thesis or comprehensive examination requirement. The student, in consultation with the academic advisor, prepares a program reflecting individual needs and interests. All courses are administered online.

Required Courses
- MMAE 545 Advanced CAD/CAM
- MMAE 546 Advanced Manufacturing Engineering
- MMAE 560 Statistical Quality and Process Control
- MMAE 547 Computer-Integrated Manufacturing Technologies

OR
- MMAE 557 Computer-Integrated Manufacturing Systems

AND one materials course
- MMAE 563 Advanced Mechanical Metallurgy

AND one course with emphasis on numerical methods
- MMAE 704 Introduction to Finite Element Analysis (2 credit hours)

AND at least 13 credit hours from:
- MMAE 433 Design of Thermal Systems
- MMAE 445 Computer-Aided Design
- MMAE 540 Robotics
- MMAE 557 Computer Integrated Manufacturing Systems
- MMAE 589 Applications in Reliability Engineering I
- MMAE 590 Applications in Reliability Engineering II
- MMAE 715 Project Management (2 credit hours)
Master of Science in Mechanical and Aerospace Engineering
Master of Science in Materials Science and Engineering
Master of Science in Manufacturing Engineering

32 credit hours
Thesis
Oral comprehensive exam

The Master of Science degree program advances knowledge through post-baccalaureate coursework and state-of-the-art research in preparation for careers in industrial research and development. The M.S. degree is also generally acceptable as a prerequisite for study toward the doctorate. In line with the department’s approach to its graduate programs, a student has considerable flexibility, in consultation with his or her program advisor, in formulating an M.S. program.

The M.S. in Mechanical and Aerospace Engineering or the M.S. in Materials Science and Engineering requires completion of a minimum of 32 credit hours of approved work, which includes six to eight credit hours of thesis research. Before completion of the first semester of graduate study, full-time students should select an area of specialization and a permanent advisor. Graduate students pursuing the M.S. degree on a part-time basis should select a permanent advisor before registering for their twelfth credit hour. The student, in consultation with the advisor, prepares a program of study that reflects individual needs and interests. The advisor must approve this program, as well as the department’s Graduate Studies Committee, the Department Chair, and the Graduate College.

After completion of the thesis, the student is required to pass an oral comprehensive examination on his or her thesis and related topics. The examination committee consists of at least three appropriate faculty members who are nominated by the thesis advisor and appointed by the department’s Graduate Studies Committee.

Course Requirements for the Master of Science in Mechanical and Aerospace Engineering

Required Courses
- MMAE 501 Engineering Analysis I
- MMAE 502 Engineering Analysis II
- AND one core course in major area of study
- AND 6 or more credit hours of non-core courses in major area
- AND elective courses as needed.

Core courses as determined by major area of study
Fluid Dynamics
- MMAE 510 Fundamentals of Fluid Mechanics

Thermal Sciences
- MMAE 520 Advanced Thermodynamics

Solids and Structures
- MMAE 530 Advanced Mechanics of Solids

Dynamics and Controls
- MMAE 541 Advanced Dynamics

Computer Aided Design and Manufacturing
- MMAE 545 Advanced CAD/CAM

No more than nine credit hours of 400-level courses that were not required for the completion of an undergraduate degree will be accepted as satisfying part of the program. Students with interdisciplinary programs will be given special consideration. Up to six credit hours of accelerated (700-level) courses are allowed.

Course Requirements for the Master of Science in Materials Science and Engineering

Required Courses (choose six)
- MMAE 468 Introduction to Ceramic Materials
- MMAE 470 Introduction to Polymer Science
- MMAE 472 Advanced Aerospace Materials
- MMAE 478 Service Failure Analysis
- MMAE 480 Forging & Forming
- MMAE 501 Engineering Analysis I
- MMAE 520 Advanced Thermodynamics
- MMAE 533 Fatigue & Fracture Mechanics
- MMAE 554 Electrical, Magnetic, & Optical Properties of Materials
- MMAE 561 Solidification & Crystal Growth
- MMAE 562 Design of Modern Alloys
- MMAE 563 Advanced Mechanical Metallurgy
- MMAE 564 Dislocations & Strengthening Mechanisms
- MMAE 565 Materials Laboratory
- MMAE 566 Problems in High-Temperature Materials
- MMAE 567 Fracture Mechanisms
- MMAE 568 Diffusion
- MMAE 569 Advanced Physical Metallurgy
- MMAE 570 Computational Methods in Materials Processing
- MMAE 571 Microstructural Characterizations of Materials
- MMAE 573 Transmission Electron Microscopy
- MMAE 574 Ferrous Transformations
- MMAE 576 Materials & Process Selection
- MMAE 578 Fiber Composites
- MMAE 579 Advanced Materials Processing
- AND 12-14 hours of non-core courses. Up to 12 credit hours of 400-level, non-core courses that were not required for the completion of an undergraduate degree and approved by the Graduate Studies Committee may count toward satisfying this requirement. Up to six credit hours of accelerated (700-level) courses are allowed.
Course Requirements for Master of Science in Manufacturing Engineering

Mechanical and Aerospace Engineering Emphasis

Required Courses
MMAE 545 Advanced CAD/CAM
MMAE 546 Advanced Manufacturing Engineering
MMAE 547 Computer-Integrated Manufacturing Technologies
MMAE 560 Statistical Quality and Process Control
AND one course in materials science and engineering

AND one course emphasizing numerical methods:
MMAE 451 Finite Element Methods in Engineering
MMAE 517 Computational Fluid Dynamics
MMAE 532 Advanced Finite Element Methods
MMAE 544 Design Optimization
OR
MMAE 570 Computational Methods in Materials Processing

AND elective courses as needed.

Materials Science and Engineering Emphasis

Required Courses
MMAE 547 Computer Integrated Manufacturing Technologies
MMAE 560 Statistical Quality and Process Control

AND one of the following:
MMAE 445 Computer-Aided Design
MMAE 545 Advanced CAD/CAM
MMAE 546 Advanced Manufacturing Engineering
OR
MMAE 576 Materials and Process Selection

AND one of the following:
MMAE 574 Ferrous Transformations
MMAE 575 Ferrous Products: Metallurgy and Manufacture
OR
MMAE 585 Engineering Optics and Laser-Based Manufacturing

AND one course emphasizing numerical methods:
MMAE 451 Finite Element Methods in Engineering
MMAE 517 Computational Fluid Dynamics
MMAE 532 Advanced Finite Element Methods
MMAE 538 Computational Techniques in FEM
MMAE 544 Design Optimization
OR
MMAE 570 Computational Methods in Materials Processing

AND elective courses as needed.
Doctor of Philosophy in Materials Science and Engineering
Doctor of Philosophy in Mechanical and Aerospace Engineering

84 credit hours beyond the Bachelor of Science
Qualifying examination
16 credit hours minimum beyond the M.S.
One full year (minimum) of thesis research
Comprehensive examination
Dissertation and oral defense

This program provides advanced, research-based education and knowledge through advanced coursework, state-of-the-art and original research, and publication of novel results in preparation for careers in academia and industrial research and development.

The department offers programs leading to the Ph.D. in Mechanical and Aerospace Engineering and the Ph.D. in Materials Science and Engineering. The doctoral degree is awarded in recognition of a high level of mastery in one of the several fields of the department including a significant original research contribution. A student working toward the Ph.D. degree has great flexibility in formulating an overall program to meet individual needs under the guidance of an advisor and the department.

Further, the student must be accepted by a thesis advisor and pass a qualifying examination given by the department in order to be admitted to candidacy for the Ph.D. degree. The examination evaluates the student’s background in order to determine the student’s potential for achieving a doctorate.

The student, in consultation with the advisor, prepares a program of study to meet individual needs and interests, which must then be approved by the advisor, the department’s Graduate Studies Committee, the Department Chair, and the Graduate College. The program of study usually consists of at least one full year of advanced coursework beyond the master’s degree, or equivalent, and a minimum of one full year of thesis research.

After the student essentially completes all coursework, he or she must pass the Ph.D. comprehensive examination. Conducted by the student’s Thesis Advisory Committee, this examination must be completed at least one year prior to graduation.

Concentrated research to satisfy the requirements of a doctoral dissertation is ordinarily conducted after the comprehensive examination has been passed. The dissertation must be approved by the student’s Thesis Advisory Committee. Thesis research should be equivalent to at least one full years work, corresponding to up to 36 thesis credit hours. This work is performed on campus; the department’s Graduate Studies Committee and the Dean of the Graduate College must approve off-campus research. The doctoral dissertation is expected to contain a distinct and substantial original contribution to the student’s field of study. After the research has been completed and a preliminary draft of the dissertation is approved, the candidate defends his or her thesis at a final oral examination, which is open to the public.

Course Requirements for Materials Science and Engineering

Required Courses (choose six)
- MMAE 468 Introduction to Ceramic Materials
- MMAE 470 Introduction to Polymer Science
- MMAE 472 Advanced Aerospace Materials
- MMAE 478 Service Failure Analysis
- MMAE 480 Forging & Forming
- MMAE 501 Engineering Analysis I
- MMAE 520 Advanced Thermodynamics
- MMAE 533 Fatigue & Fracture Mechanics
- MMAE 554 Electrical, Magnetic, & Optical Properties of Materials
- MMAE 561 Solidification & Crystal Growth
- MMAE 562 Design of Modern Alloys
- MMAE 563 Advanced Mechanical Metallurgy
- MMAE 564 Dislocations & Strengthening Mechanisms
- MMAE 565 Materials Laboratory

- MMAE 566 Problems in High-Temperature Materials
- MMAE 567 Fracture Mechanisms
- MMAE 568 Diffusion
- MMAE 569 Advanced Physical Metallurgy
- MMAE 570 Computational Methods in Materials Processing
- MMAE 571 Microstructural Characterizations of Materials
- MMAE 573 Transmission Electron Microscopy
- MMAE 574 Ferrous Transformations
- MMAE 576 Materials & Process Selection
- MMAE 578 Fiber Composites
- MMAE 579 Advanced Materials Processing

AND elective courses as needed.
Course Requirements for Mechanical and Aerospace Engineering

Required Courses:
MMAE 501 Engineering Analysis I
MMAE 502 Engineering Analysis II
AND two courses from group EA (fluid dynamics, thermals sciences and solids and structures students must take MMAE 507 Continuum Mechanics)
AND one core course in major area of study
AND one core course in second area
AND 9 or more credit hours of non-core courses in major area
AND elective courses as needed.

Core courses as determined by major area of study
Fluid Dynamics
MMAE 510 Fundamentals of Fluid Mechanics

Thermal Sciences
MMAE 520 Advanced Thermodynamics

Solids and Structures
MMAE 530 Advanced Mechanics of Solids

Dynamics and Controls
MMAE 541 Advanced Dynamics

Computer Aided Design and Manufacturing
MMAE 545 Advanced CAD/CAM

Group EA:
MMAE 503 Advanced Engineering Analysis
MMAE 508 Perturbation Methods
MMAE 509 Introduction to Continuum Mechanics
MATH 512 Partial Differential Equations
MATH 515 Ordinary Differential Equations and Dynamical Systems
MATH 522 Mathematical Modeling
MATH 535 Optimization I
MATH 544 Stochastic Dynamics
MATH 545 Stochastic Partial Differential Equations
MATH 553 Discrete Applied Mathematics I
ECE 511 Analysis of Random Signals
ECE 531 Linear System Theory
ECE 567 Statistical Signal Processing
Master of Science in Mechanical and Aerospace Engineering with (E³) Specialization
Master of Science in Materials Science and Engineering with (E³) Specialization
Master of Engineering in Mechanical and Aerospace Engineering with (E³) Specialization
Master of Engineering in Materials Science and Engineering with (E³) Specialization

The Energy/Environment/Economics (E³) program was developed to respond to the rapidly changing needs of the energy industry by providing the interdisciplinary research and training required to produce a new breed of engineer - one who specializes in energy technologies and who understands the associated environmental issues and economic forces that drive technology choice.

E³ specialization requires an interdisciplinary thesis in an E³ area of research for M.S. and Ph.D. degrees, and an interdisciplinary graduate project for professional master's degrees. Graduate students in E³ should also be enrolled in fundamental courses related to the topics of energy, environment, and economics. E³ is designed primarily for students majoring in mechanical and aerospace, materials, chemical, environmental, or electrical engineering who are planning careers in energy-related fields. This interdisciplinary training prepares students to be not only creative and expert in a specialized area of energy extraction, conversion, or utilization, but also to possess a broad knowledge base of different energy sources, environmental issues related to energy extraction, conversion, and utilization, and of the impact of industrial ecology principles on the design and operation of energy systems. Furthermore, students will gain sufficient knowledge of economic and regulatory issues to enable them to make more viable technology choices.

General Degree Requirements
Students pursuing a master’s degree are required to take 30-32 credit hours beyond the requirements of a B.S. degree program. The Ph.D. program requires 84 credit hours beyond the Bachelor of Science. The curriculum consists of two components: department core courses that provide a strong background in basic principles of the chosen engineering field and E³ specialization courses. Selected E³ undergraduate courses may be substituted for graduate courses with the approval of the designated advisor, if the total undergraduate credit hours for the M.E. or M.S. degree do not exceed departmental constraints.

Students are also required to attend interdisciplinary seminars during their first and/or second semesters, which are offered as part of the regular graduate seminars by the departments. A student completing a M.S. or Ph.D. thesis or professional master’s project will be a member of an interdisciplinary research team consisting of professors and students from chemical, environmental, electrical, materials, and mechanical engineering backgrounds, working in a cross-disciplinary group project. Each interdisciplinary team must include professors from different departments.

Policies and procedures regarding admission, advising, financial aid, and comprehensive examinations are established by the individual departments offering this program.
Course Requirements for Master of Science in Mechanical and Aerospace Engineering
with (E^3) Specialization

Engineering Analysis Courses
MMAE 501 Engineering Analysis I
MMAE 502 Engineering Analysis II

Core Courses
CHE 543 Energy, Environment, & Economics
AND one of the following:
MMAE 520 Advanced Thermodynamics
CHE 503 Thermodynamics
CHE 553 Advanced Thermodynamics

AND one of the following:
MMAE 522 Nuclear, Fossil-Fuel, & Sustainable Energy Systems
MMAE 524 Fundamentals of Combustion
CHE 541 Renewable Energy Technologies

Non Core Courses
Two of the following:
MMAE 510 Fundamentals of Fluid Mechanics
MMAE 517 Computational Fluid Mechanics
MMAE 524 Fundamentals of Combustion
MMAE 525 Fundamentals of Heat Transfer
MMAE 526 Heat Transfer: Conduction
MMAE 527 Heat Transfer: Convection & Radiation

AND one of the following:
CHE 541 Renewable Energy Technologies
CHE 560/ MMAE 560 Statistical Quality & Process Control
EMS 500 Fundamentals of Environmental Science
EMS 503 Environmental Pollution Prevention & Control Strategies
EMS 504 Industrial Ecology & Systems
ENVE 501 Environmental Chemistry
ENVE 506 Chemodynamics
ENVE 542 Physiochemical Processes in Environmental Engineering
ENVE 551 Industrial Waste Treatment
ENVE 561 Design of Environmental Engineering Processes
ENVE 570 Air Pollution Meteorology
ENVE 577 Design of Air Pollution Control Devices
ENVE 578 Physical & Chemical Processes for Industrial Gas Cleaning
ENVE 580 Hazardous Waste Engineering

Thesis research
MMAE 591 Research and Thesis

AND elective courses as needed
Course Requirements for Master of Science in Materials Science and Engineering
with (E3) Specialization

Core Courses

CHE 543 Energy, Environment & Economics
MMAE 468 Introduction to Ceramic Materials
MMAE 569 Advanced Physical Metallurgy

AND one of the following:
MMAE 520 Advanced Thermodynamics
CHE 503 Thermodynamics
CHE 553 Advanced Thermodynamics

AND one of the following:
MMAE 522 Nuclear, Fossil-Fuel, & Sustainable Energy Systems
MMAE 523 Fundamentals of Power Generation
CHE 541 Renewable Energy Technologies
CHE 566 Electrochemical Engineering

AND elective courses as needed

Non Core Courses

Two of the following:
MMAE 525 Fundamentals of Heat Transfer
MMAE 561 Solidification & Crystal Growth
MMAE 563 Advanced Mechanical Metallurgy
MMAE 566 Problems in High-Temperature Materials
MMAE 571 Microstructural Characterization of Materials
MMAE 573 Transmission Electron Microscopy
MMAE 579 Advanced Materials Processing
MMAE 470 Introduction to Polymer Science

AND one of the following:
CHE 567 Fuel Cell Fundamentals
EMS 500 Fundamentals of Environmental Science
EMS 503 Environmental Pollution Prevention & Control Strategies
EMS 504 Industrial Ecology & Systems
ENVE 501 Environmental Chemistry
ENVE 506 Chemodynamics
ENVE 542 Physicochemical Processes in Environmental Engineering
ENVE 551 Industrial Waste Treatment
ENVE 561 Design of Environmental Engineering Processes
ENVE 570 Air Pollution Meteorology
ENVE 577 Design of Air Pollution Control Devices
ENVE 578 Physical and Chemical Processes for Industrial Gas Cleaning
ENVE 580 Hazardous Waste Engineering

Thesis research
MMAE 591 Thesis

AND elective courses as needed
Course Requirements for Master of Engineering in Mechanical and Aerospace Engineering with (E³) Specialization

Engineering Analysis Courses
MMAE 501 Engineering Analysis I
MMAE 502 Engineering Analysis II

Core Courses
CHE 543 Energy, Environment & Economics
AND one of the following:
MMAE 520 Advanced Thermodynamics
CHE 503 Thermodynamics
CHE 553 Advanced Thermodynamics
AND one of the following:
MMAE 522 Nuclear, Fossil-Fuel, & Sustainable Energy Systems
MMAE 523 Fundamentals of Power Generation
MMAE 524 Fundamentals of Combustion
CHE 541 Renewable Energy Technologies

Non Core Courses
Two of the following:
MMAE 510 Fundamentals of Fluid Mechanics
MMAE 517 Computational Fluid Mechanics
MMAE 524 Fundamentals of Combustion
MMAE 525 Fundamentals of Heat Transfer
MMAE 526 Heat Transfer: Conduction
MMAE 527 Heat Transfer: Convection & Radiation

AND one of the following:
CHE 541 Renewable Energy Technologies
CHE 560/ MMAE 560 Statistical Quality & Process Control
EMS 500 Fundamentals of Environmental Science
EMS 503 Environmental Pollution Prevention & Control Strategies
EMS 504 Industrial Ecology & Systems
ENVE 501 Environmental Chemistry
ENVE 506 Chemodynamics
ENVE 542 Physiochemical Processes in Environmental Engineering
ENVE 551 Industrial Waste Treatment
ENVE 561 Design of Environmental Engineering Processes
ENVE 570 Air Pollution Meteorology
ENVE 577 Design of Air Pollution Control Devices
ENVE 578 Physical & Chemical Processes for Industrial Gas Cleaning
ENVE 580 Hazardous Waste Engineering

AND elective courses as needed
Course Requirements for Master of Engineering in Materials Science and Engineering with (E) Specialization

Core Courses
CHE 543 Energy, Environment & Economics
MMAE 468 Introduction to Ceramic Materials
MMAE 569 Advanced Physical Metallurgy

AND one of the following:
MMAE 520 Advanced Thermodynamics
CHE 503 Thermodynamics
CHE 553 Advanced Thermodynamics

AND one of the following:
MMAE 522 Nuclear, Fossil-Fuel, & Sustainable Energy Systems
MMAE 523 Fundamentals of Power Generation
CHE 541 Renewable Energy Technologies
CHE 566 Electrochemical Engineering

Non Core Courses
Two of the following:
MMAE 525 Fundamentals of Heat Transfer
MMAE 561 Solidification & Crystal Growth
MMAE 563 Advanced Mechanical Metallurgy
MMAE 566 Problems in High-Temperature Materials
MMAE 571 Microstructural Characterization of Materials
MMAE 573 Transmission Electron Microscopy
MMAE 579 Advanced Materials Processing
MMAE 470 Introduction to Polymer Science

AND one of the following:
CHE 567 Fuel Cell Fundamentals
EMS 500 Fundamentals of Environmental Science
EMS 503 Environmental Pollution Prevention & Control Strategies
EMS 504 Industrial Ecology & Systems
ENVE 501 Environmental Chemistry
ENVE 506 Chemodynamics
ENVE 542 Physiochemical Processes in Environmental Engineering
ENVE 551 Industrial Waste Treatment
ENVE 561 Design of Environmental Engineering Processes
ENVE 570 Air Pollution Meteorology
ENVE 577 Design of Air Pollution Control Devices
ENVE 578 Physical and Chemical Processes for Industrial Gas Cleaning
ENVE 580 Hazardous Waste Engineering

AND elective courses as needed

Certificate Programs

Computer Integrated Design and Manufacturing
Required Courses (choose four)
MMAE 445 Computer-Aided Design
MMAE 540 Robotics
MMAE 545 Advanced CAD/CAM
MMAE 547 Computer Integrated Manufacturing-Technologies
MMAE 557 Computer Integrated Manufacturing-Systems

Product Quality and Reliability Assurance
Required Courses
MMAE 560 Statistical Quality and Process Control
MMAE 589 Applications in Reliability Engineering I
MMAE 590 Applications in Reliability Engineering II
MMAE 720 Introduction to Design Assurance
Course Descriptions

Numbers in parentheses represent class hours, lab hours, and total credit hours, respectively.

MMAE 501 Engineering Analysis I

(3-0-3)

MMAE 502 Engineering Analysis II
Generalized functions and Green’s functions. Complex integration: series expansions of complex functions, singularities, Cauchy’s residue theorem, and evaluation of real definite integrals. Integral transforms: Fourier and Laplace transforms, applications to partial differential equations and integral equations. Prerequisite(s): [(MMAE 501)]

(3-0-3)

MMAE 503 Advanced Engineering Analysis
Selected topics in advanced engineering analysis, such as ordinary differential equations in the complex domain, partial differential equations, integral equations, and/or nonlinear dynamics and bifurcation theory, chosen according to student and instructor interest. Prerequisite(s): [(MMAE 502)]

(3-0-3)

MMAE 508 Perturbation Methods
Asymptotic series, regular and singular perturbations, matched asymptotic expansions, and WKB theory. Methods of strained coordinates and multiple scales. Application of asymptotic methods in science and engineering. Prerequisite(s): [(MMAE 501)]

(3-0-3)

MMAE 509 Introduction to Continuum Mechanics
A unified treatment of topics common to solid and fluid mechanics. Cartesian tensors. Deformation, strain, rotation and compatibility equations. Motion, velocity gradient, vorticity. Momentum, moment of momentum, energy, and stress tensors. Equations of motion, frame indifference. Constitutive relations for elastic, viscoelastic, and fluids and plastic solids. Prerequisite(s): [(MMAE 501)]

(3-0-3)

MMAE 510 Fundamentals of Fluid Mechanics
Kinematics of fluid motion. Constitutive equations of isotropic viscous compressible fluids. Derivation of Navier-Stokes equations. Lessons from special exact solutions, self-similarity. Admissibility of idealizations and their applications; inviscid, adiabatic, irrotational, incompressible, boundary-layer, quasi one-dimensional, linearized and creeping flows. Vorticity theorems. Unsteady Bernoulli equation. Basic flow solutions. Basic features of turbulent flows. Prerequisite(s): [(MMAE 501*)] An asterisk (*) designates a course which may be taken concurrently.

(4-0-4)

MMAE 511 Dynamics of Compressible Fluids
Low-speed compressible flow past bodies. Linearized, subsonic, and supersonic flow past slender bodies. Similarity laws. Transonic flow. Hypersonic flow, mathematical theory of characteristics. Applications including shock and nonlinear wave interaction in unsteady one-dimensional flow and two-dimensional, planar and axisymmetric supersonic flow. Prerequisite(s): [(MMAE 510)]

(3-0-3)

MMAE 512 Dynamics of Viscous Fluids
Navier-Stokes equations and some simple exact solutions. Oseen-Stokes flows. Boundary-layer equations and their physical interpretations. Flows along walls, and in channels. Jets and wakes. Separation and transition to turbulence. Boundary layers in unsteady flows. Thermal and compressible boundary layers. Mathematical techniques of similarity transformation, regular and singular perturbation, and finite differences. Prerequisite(s): [(MMAE 510)]

(4-0-4)

MMAE 513 Turbulent Flows

(4-0-4)

MMAE 514 Stability of Viscous Flows

(4-0-4)
MMAE 515
Engineering Acoustics
Characteristics of sound waves in two and three dimensions. External and internal sound wave propagation. Transmission and reflection of sound waves through media. Sources of sound from fixed and moving bodies. Flow-induced vibrations. Sound-level measurement techniques.
(3-0-3)

MMAE 516
Advanced Experimental Methods in Fluid Mechanics
Design and use of multiple sensor probes to measure multiple velocity components, reverse-flow velocities, Reynolds stress, vorticity components and intermittency. Simultaneous measurement of velocity and temperature. Theory and use of optical transducers, including laser velocimetry and particle tracking. Special measurement techniques applied to multiphase and reacting flows. Laboratory measurements in transitional and turbulent wakes, free-shear flows, jets, grid turbulence and boundary layers. Digital signal acquisitions and processing. Instructor's consent required.
(2-3-3)

MMAE 517
Computational Fluid Dynamics
(3-0-3)

MMAE 518
Spectral Methods in Computational Fluid Dynamics
Application of advanced numerical methods and techniques to the solution of important classes of problems in fluid mechanics. Emphasis is in methods derived from weighted-residuals approaches, like Galerkin and Galerkin-Tau methods, spectral and pseudospectral methods, and dynamical systems modeling via projections on arbitrary orthogonal function bases. Finite element and spectral element methods will be introduced briefly in the context of Galerkin methods. A subsection of the course will be devoted to numerical turbulence modeling, and to the problem of grid generation for complex geometries. Prerequisite(s): [(MMAE 501 and MMAE 510)]
(3-0-3)

MMAE 519
Cardiovascular Fluid Mechanics
Anatomy of the cardiovascular system. Scaling principles. Lumped parameter, one-dimensional linear and nonlinear wave propagation, and three-dimensional modeling techniques applied to simulate blood flow in the cardiovascular system. Steady and pulsatile flow in rigid and elastic tubes. Form and function of blood, blood vessels, and the heart from an engineering perspective. Sensing, feedback, and control of the circulation. Includes a student project.
(3-0-3)

MMAE 520
Advanced Thermodynamics
Macroscopic thermodynamics: first and second laws applied to equilibrium in multicomponent systems with chemical reaction and phase change, availability analysis, evaluations of thermodynamic properties of solids, liquids, and gases for single and multicomponent systems. Applications to contemporary engineering systems. Prerequisite: An undergraduate course in applied thermodynamics.
(3-0-3)

MMAE 522
Nuclear, Fossil-Fuel, & Sustainable Energy Systems
(3-0-3)

MMAE 523
Fundamentals of Power Generation
Thermodynamic, combustion, and heat transfer analyses relating to steam-turbine and gas-turbine power generation. Environmental impacts of combustion power cycles. Consideration of alternative and sustainable power generation processes such as wind and tidal, geothermal, hydroelectric, solar, fuel cells, nuclear power, and microbial. Prerequisite: An undergraduate course in applied thermodynamics.
(3-0-3)

MMAE 524
Fundamentals of Combustion
(3-0-3)

MMAE 525
Fundamentals of Heat Transfer
(3-0-3)
MMAE 526
Heat Transfer: Conduction
Fundamental laws of heat conduction. Heat equations and their initial and boundary conditions. Steady, unsteady and periodic states in one or multidimensional problems. Composite materials. Methods of Green’s functions, eigenfunction expansions, finite differences, finite element methods. Prerequisite(s): [(MMAE 502 and MMAE 525)] (3-0-3)

MMAE 527
Heat Transfer: Convection & Radiation

MMAE 529
Theory of Plasticity

MMAE 530
Advanced Mechanics of Solids

MMAE 531
Theory of Elasticity
Notion of stress and strain, field equations of linearized elasticity. Plane problems in rectangular and polar coordinates. Problems without a characteristic length. Plane problems in linear elastic fracture mechanics. Complex variable techniques, energy theorems, approximate numerical techniques. Prerequisite(s): [(MMAE 530)] (3-0-3)

MMAE 532
Advanced Finite Element Methods
Continuation of MMAE 451/CAE 442. Covers the theory and practice of advanced finite element procedures. Topics include implicit and explicit time integration, stability of integration algorithms, unsteady heat conduction, treatment of plates and shells, small-strain plasticity, and treatment of geometric nonlinearity. Practical engineering problems in solid mechanics and heat transfer are solved using MATLAB and commercial finite element software. Special emphasis is placed on proper time step and convergence tolerance selection, mesh design, and results interpretation. Prerequisite(s): [(CAE 442) OR (MMAE 451)] (3-0-3)

MMAE 533
Fatigue & Fracture Mechanics

MMAE 535
Wave Propagation
This is an introductory course on wave propagation. Although the ideas are presented in the context of elastic waves in solids, they easily carry over to sound waves in water and electromagnetic waves. The topics include one dimensional motion of elastic continuum, traveling waves, standing waves, energy flux, and the use of Fourier integrals. Problem statement in dynamic elasticity, uniqueness of solution, basic solution of elastodynamics, integral representations, steady state time harmonic response. Elastic waves in unbounded medium, plane harmonic waves in elastic half-spaces, reflection and transmission at interfaces, Rayleigh waves, Stoneley waves, slowness diagrams, dispersive waves in waveguides and phononic composites, thermal effects and effects of viscoelasticity, anisotropy, and nonlinearity on wave propagation. (3-0-3)

MMAE 536
Experimental Solid Mechanics
Review of applied elasticity. Stress, strain and stress-strain relations. Basic equations and boundary value problems in plane elasticity. Methods of strain measurement and related instrumentation. Electrical resistance strain gauges, strain gauge circuits and recording instruments. Analysis of strain gauge data. Brittle coatings. Photoelasticity; photoelastic coatings; moire methods; interferometric methods. Applications of these methods in the laboratory. Prerequisite: An undergraduate course in mechanics of solids. (3-2-4)

MMAE 540
Robotics
Kinematics and inverse kinematics of manipulators. Newton-Euler dynamic formulation. Independent joint control. Trajectory and path planning using potential fields and probabilistic roadmaps. Adaptive control. Force control. Prerequisite(s): [(MMAE 443 and MMAE 501*)] An asterisk (*) designates a course which may be taken concurrently. (3-0-3)
MMAE 541
Advanced Dynamics
Prerequisite(s): [(MMAE 501*)] An asterisk (*) designates a course which may be taken concurrently. (3-0-3)

MMAE 542
Applied Dynamical Systems
This course will cover analytical and computational methods for studying nonlinear ordinary differential equations especially from a geometric perspective. Topics include stability analysis, perturbation theory, averaging methods, bifurcation theory, chaos, and Hamiltonian systems.
Prerequisite(s): [(MMAE 501)] (3-0-3)

MMAE 543
Modern Control Systems
Prerequisite(s): [(MMAE 501*)] An asterisk (*) designates a course which may be taken concurrently. (3-0-3)

MMAE 544
Design Optimization
Optimization theory and practice with examples. Finite-dimensional unconstrained and constrained optimization. Kuhn-Tucker theory, linear and quadratic programming, penalty methods, direct methods, approximation techniques, duality. Formulation and computer solution of design optimization problems in structures, manufacturing and thermofluid systems. Prerequisite: An undergraduate course in numerical methods.
Prerequisite(s): [(MMAE 501*)] An asterisk (*) designates a course which may be taken concurrently. (3-0-3)

MMAE 545
Advanced CAD/CAM
Prerequisite(s): [(MMAE 445)] (3-0-3)

MMAE 546
Advanced Manufacturing Engineering
Introduction to advanced manufacturing processes, such as powder metallurgy, joining and assembly, grinding, water jet cutting, laser-based manufacturing, etc. Effects of variables on the quality of manufactured products. Process and parameter selection. Important physical mechanisms in manufacturing process. Prerequisite: An undergraduate course in manufacturing processes or instructor consent.
Prerequisite(s): [(MMAE 445 and MMAE 501*)] An asterisk (*) designates a course which may be taken concurrently. (3-0-3)

MMAE 547
Computer-Integrated Manufacturing Technologies
The use of computer systems in planning and controlling the manufacturing process including product design, production planning, production control, production processes, quality control, production equipment and plant facilities.
Prerequisite(s): [(MMAE 501)] (3-0-3)

MMAE 551
Experimental Mechatronics
Prerequisite(s): [(MMAE 443)] (2-3-3)

MMAE 552
Introduction to the Space Environment
Prerequisite(s): [(MMAE 501)] (3-0-3)

MMAE 553
Electrical, Magnetic & Optical Properties of Materials
Prerequisite(s): [(MMAE 443 and MMAE 501*)] An asterisk (*) designates a course which may be taken concurrently. (3-0-3)

MMAE 554
Introduction to Navigation Systems
Fundamental concepts of positioning and dead reckoning. Principles of modern satellite-based navigation systems, including GPS, GLONASS, and Galileo. Differential GPS (DGPS) and augmentation systems. Carrier phase positioning and cycle ambiguity resolution algorithms. Autonomous integrity monitoring. Introduction to optimal estimation, Kalman filters, and covariance analysis. Inertial sensors and integrated navigation systems.
Prerequisite(s): [(MMAE 443 and MMAE 501*)] An asterisk (*) designates a course which may be taken concurrently. (3-0-3)

MMAE 555
Nanoscale Imaging & Manipulation
Includes an overview of scanning probe microscopy and of AFM imaging; mathematical morphology; imaging simulation and surface recognition; and high-speed AFM imaging. Also covers nanoscale physics, including probing nanoscale forces, van der Waals force, electrostatic force, and capillary force. Nanomanipulation topics such as mechanical scratching and pushing electrophoresis, and augmented reality. Manipulation automation and manipulation planning. Applications of selected topics covered.
Prerequisite(s): [(MMAE 443)] (3-0-3)
MMAE 557
Computer-Integrated Manufacturing Systems
Advanced topics in Computer-Integrated Manufacturing, including control systems, group technology, cellular manufacturing, flexible manufacturing systems, automated inspection, lean production, Just-In-Time production, and agile manufacturing systems.
(3-0-3)

MMAE 560
Statistical Quality & Process Control
Basic theory, methods and techniques of on-line, feedback quality control systems for variable and attribute characteristics. Methods for improving the parameters of the production, diagnosis, and adjustment processes so that quality loss is minimized. Same as CHE 560.
(3-0-3)

MMAE 561
Solidification & Crystal Growth
(3-0-3)

MMAE 562
Design of Modern Alloys
Phase rule, multicomponent equilibrium diagrams, determination of phase equilibria, parameters of alloy development, prediction of structure and properties. Prerequisite: A background in phase diagrams and thermodynamics.
(2-0-2)

MMAE 563
Advanced Mechanical Metallurgy
Analysis of the general state of stress and strain in solids. Analysis of elasticity and fracture, with a major emphasis on the relationship between properties and structure. isotropic and anisotropic yield criteria. Testing and forming techniques related to creep and superplasticity. Deformation mechanism maps. Fracture mechanics topics related to testing and prediction of service performance. Static loading to onset of rapid fracture, environmentally assisted cracking fatigue, and corrosion fatigue. Prerequisite: A background in mechanical properties.
(3-0-3)

MMAE 564
Dislocations & Strengthening Mechanisms
(3-0-3)

MMAE 565
Materials Laboratory
Advanced synthesis projects studying microstructure and properties of a series of binary and ternary alloys. Gain hands-on knowledge of materials processing and advanced materials characterization through an integrated series of experiments to develop understanding of the processing-microstructure-properties relationship. Students arc melt a series of alloys, examine the cast microstructures as a function of composition using optical and electron microscopy, DTA, EDS, and XRD. The alloys are treated in different thermal and mechanical processes. The microstructural and mechanical properties modification and changes during these processes are characterized. Groups of students will be assigned different alloy systems, and each group will present their results orally to the class and the final presentation to the whole materials science and engineering group.
(1-6-3)

MMAE 566
Problems in High-Temperature Materials
Prerequisite(s): [(MMAE 564)]
(3-0-3)

MMAE 567
Fracture Mechanisms
Basic mechanisms of fracture and embrittlement of metals. Crack initiation and propagation by cleavage, microvoid coalescence, and fatigue mechanisms. Hydrogen embrittlement, stress corrosion cracking and liquid metal embrittlement. Temper brittleness and related topics. Prerequisite: Background in crystal structure, defects, and mechanical properties.
(3-0-3)

MMAE 568
Diffusion
Theory, techniques and interpretation of diffusion studies in metals. Prerequisite: Background in crystal structures, defects, and thermodynamics.
(2-0-2)

MMAE 569
Advanced Physical Metallurgy
Thermodynamics and kinetics of phase transformations, theory of nucleation and growth, metastability, phase diagrams. Prerequisite: Background in phase diagrams and thermodynamics.
(3-0-3)

MMAE 570
Computational Methods in Materials Processing
Advanced theories and computational methods used in understanding and modeling of various materials processing that involve deformation, solidification, microstructural changes etc. This course will discuss the fundamental theories and mathematical models that describe the relevant physical phenomena in the computational framework of finite element method. If will consist of three parts: (1) Lectures on fundamental theories and models; (2) computational and numerical methods; (3) computer laboratories. Prerequisite: Background in finite element methods and materials processing.
(3-0-3)
MMAE 571
Microstructural Characterization of Materials
(2-3-3)

MMAE 573
Transmission Electron Microscopy
Design, construction and operation of transmission electron microscope, including image formation and principles of defect analysis in materials science applications. Theory and use of state-of-the-art micro characterization techniques for morphological, crystallographic, and elemental analysis at high spatial resolutions at 10 nanometers in metallurgical and ceramic studies will also be covered.
(3-3-3)

MMAE 574
Ferrous Transformations
Allotropic modifications in iron and solid solution effects of the important alloying elements on iron. Physical metallurgy of pearlite, bainite and martensite reactions. Physical and mechanical property changes during eutectoid decomposition and tempering. Prerequisite: Background in phase diagrams and thermodynamics.
(3-0-3)

MMAE 576
Materials & Process Selection
Context of selection; decision analysis; demand, materials and processing profiles; design criteria; selection schemes; value and performance oriented selection; case studies.
(3-0-3)

MMAE 578
Fiber Composites
(3-0-3)

MMAE 579
Advanced Materials Processing
Processing science and fundamentals in making advanced materials, particularly nanomaterials and composites. Applications of the processing science to various processing technologies including severe plastic deformation, melt infiltration, sintering, co-precipitation, sol-gel process, aerosol synthesis, plasma spraying, vapor-liquid-solid growth, chemical vapor deposition, physical vapor deposition, atomic layer deposition, and lithography. Prerequisite(s): [(MMAE 467)]
(3-0-3)

MMAE 585
Engineering Optics & Laser-Based Manufacturing
Fundamentals of geometrical and physical optics as related to problems in engineering design and research; fundamentals of laser-material interactions and laser-based manufacturing processes. This is a lecture-dominated class with around three experiments organized to improve students’ understanding of the lectures. The topics covered include: geometrical optics (law of reflection and refraction, matrix method, etc.); physical optics (wave equations, interference, polarization, Fresnel equations, etc.); optical properties of materials and Drude theory; laser fundamentals; laser-matter interactions and laser-induced thermal and mechanical effects, laser applications in manufacturing (such as laser hardening, machining, sintering, shock peening, and welding). Knowledge of Heat & Mass Transfer required.
(3-0-3)

MMAE 589
Applications in Reliability Engineering I
This first part of a two-course sequence focuses on the primary building blocks that enable an engineer to effectively communicate and contribute as a part of a reliability engineering effort. Students develop an understanding of the long term and intermediate goals of a reliability program and acquire the necessary knowledge and tools to meet these goals. The concepts of both probabilistic and deterministic design are presented, along with the necessary supporting understanding that enables engineers to make design trade-offs that achieve a positive impact on the design process. Strengthening their ability to contribute in a cross functional environment, students gain insight that helps them understand the reliability engineering implications associated with a given design objective, and the customer’s expectations associated with the individual product or product platforms that integrate the design. These expectations are transformed into metrics against which the design can be measured. A group project focuses on selecting a system, developing a flexible reliability model, and applying assessment techniques that suggest options for improving the design of the system.
(3-0-3)

MMAE 590
Applications in Reliability Engineering II
This is the second part of a two-course sequence emphasizing the importance of positively impacting reliability during the design phase and the implications of not making reliability an integrated engineering function. Much of the subject matter is designed to allow the students to understand the risks associated with a design and provide the insight to reduce these risks to an acceptable level. The student gains an understanding of the methods available to measure reliability metrics and develops an appreciation for the impact manufacturing can have on product performance if careful attention is not paid to the influencing factors early in the development process. The discipline of software reliability is introduced, as well as the influence that maintainability has on performance reliability. The sequence culminates in an exhaustive review of the lesson plans in a way that empowers practicing or future engineers to implement their acquired knowledge in a variety of functional environments, organizations and industries. The group project for this class is a continuation of the previous course, with an emphasis on applying the tools and techniques introduced during this second of two courses. Prerequisite(s): [(MMAE 589)]
(3-0-3)

MMAE 591
Research & Thesis M.S.
(Credit: Variable)
MMAE 593
MMAE Seminar
Reports on current research. Full-time graduate students in the department are expected to register and attend.
(1-0-0)

MMAE 594
Project for Master of Engineering Students
Design projects for the master of mechanical and aerospace engineering, master of materials engineering, and master of manufacturing engineering degrees.
(Credit: Variable)

MMAE 597
Special Topics
Advanced topic in the fields of mechanics, mechanical and aerospace, metallurgical and materials, and manufacturing engineering in which there is special student and staff interest.
(Variable credit)
(Credit: Variable)

MMAE 600
Continuance of Residence
(0-0-1)

MMAE 691
Research & Thesis Ph.D.
(Credit: Variable)

MMAE 704
Introduction to Finite Element Analysis
This course provides a comprehensive overview of the theory and practice of the finite element method by combining lectures with selected laboratory experiences. Lectures cover the fundamentals of linear finite element analysis, with special emphasis on problems in solid mechanics and heat transfer. Topics include the direct stiffness method, the Galerkin method, isoperimetric finite elements, equation solvers, bandwidth of linear algebraic equations and other computational issues. Lab sessions provide experience in solving practical engineering problems using commercial finite element software. Special emphasis is given to mesh design and results interpretation using commercially available pre- and post-processing software.
(2-0-2)

MMAE 705
Computer Aided Design with Pro Engineer
This course provides an introduction to Computer-Aided Design and an associated finite element analysis technique. A series of exercises and instruction in Pro/ENGINEER will be completed. The operation of Mecanica (the associated FEM package) will also be introduced. Previous experience with CAD and FEA will definitely speed learning, but is not essential.
(2-0-2)

MMAE 707
High-Temperature Structural Materials
(2-0-2)

MMAE 709
Overview of Reliability Engineering
This course covers the role of reliability in robust product design. It dwells upon typical failure mode investigation and develops strategies to design them out of the product. Topics addressed include reliability concepts, systems reliability, modeling techniques, and system availability predictions. Case studies are presented to illustrate the cost-benefits due to pro-active reliability input to systems design, manufacturing and testing.
(2-0-2)

MMAE 710
Dynamic & Nonlinear Finite Element Analysis
Provides a comprehensive understanding of the theory and practice of advanced finite element procedures. The course combines lectures on dynamic and nonlinear finite element analysis with selected computer labs. The lectures cover implicit and explicit time integration techniques, stability of integration algorithms, treatment of material and geometric nonlinearity, and solution techniques for nonlinear finite element equations. The computer labs train student to solve practical engineering problems in solid mechanics and heat transfer using ABQUS and Hypermesh. Special emphasis is placed on proper time step and convergence tolerance selection, mesh design, and results interpretation. A full set of course notes will be provided to class participants as well as a CD-ROM containing course notes, written exercises, computer labs, and all worked out examples.
Prerequisite(s): [(MMAE 704)]
(2-0-2)

MMAE 713
Engineering Economic Analysis
Introduction to the concepts of Engineering Economic Analysis, also known as micro-economics. Topics include equivalence, the time value of money, selecting between alternative, rate of return analysis, compound interest, inflation, depreciation, and estimating economic life of an asset.
(2-0-2)

MMAE 715
Project Management
This course will cover the basic theory and practice of project management from a practical viewpoint. Topics will include project management concepts, recourses, duration vs. effort, project planning and initiation, progress tracking methods, CPM and PERT, reporting methods, replanning, team project concepts, and managing multiple projects. Microsoft Project software will be used extensively.
(2-0-2)

MMAE 724
Introduction to Acoustics
This short course provides a brief introduction to the fundamentals of acoustics and the application to product noise prediction and reduction. The first part focuses on fundamentals of acoustics and noise generation. The second part of the course focuses on applied noise control.
(2-0-2)